
Inter-Client Exchange (ICE) Library

Version 1.0

X Consortium Standard

X Version 11, Release 6.1

Ralph Mor

X Consortium

Copyright 1993, 1994 X Consortium

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated
documentation files (the ‘‘Software’’), to deal in the Software without restriction, including without limita-
tion the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the
Software, and to permit persons to whom the Software is furnished to do so, subject to the following condi-
tions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions
of the Software.

THE SOFTWARE IS PROVIDED ‘‘AS IS’’, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FIT-
NESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE X
CONSORTIUM BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNEC-
TION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Except as contained in this notice, the name of the X Consortium shall not be used in advertising or other-
wise to promote the sale, use or other dealings in this Software without prior written authorization from the
X Consortium.

X Window System is a trademark of X Consortium, Inc.

1. Acknowledgements

Thanks to Bob Scheifler for his thoughtful input on the design of the ICE library. Thanks also to Jordan
Brown, Larry Cable, Donna Converse, Clive Feather, Stephen Gildea, Vania Joloboff, Kaleb Keithley,
Stuart Marks, Hiro Miyamoto, Ralph Swick, Jim VanGilder, and Mike Wexler.

2. Overview of ICE

There are numerous possible "inter-client" protocols, with many similarities and common needs - authenti-
cation, version negotiation, byte order negotiation, etc. The ICE protocol is intended to provide a frame-
work for building such protocols, allowing them to make use of common negotiation mechanisms and to be
multiplexed over a single transport connection.

3. The ICE Library - A "C" Language Interface to ICE

A client that wishes to utilize ICE must first register the protocols it understands with the ICE library. Each
protocol is dynamically assigned a major opcode ranging from 1-255 (two clients can use different major
opcodes for the same protocol). The next step for the client is to either open a connection with another
client, or to wait for connections made by other clients. Authentication may be required. A client can both
initiate connections with other clients and be waiting for clients to connect to itself (a nested session
manager is an example). Once an ICE connection is established between the two clients, one of the clients
needs to initiate aProtocol Setupin order to "activate" a given protocol. Once the other client accepts the
Protocol Setup(once again, authentication may be required), the two clients are ready to start passing mes-
sages specific to that protocol to each other. Multiple protocols may be active on a single ICE connection.
Clients are responsible for notifying the ICE library when a protocol is no longer active on an ICE connec-
tion, although ICE does not define how each sub-protocol triggers a protocol shutdown.

The ICE library utilizes callbacks to process incoming messages. Using callbacks allowsProtocol Setups
and authentication to happen "behind the scenes." An additional benefit is that messages never need to be
buffered up by the library when the client "blocks" waiting for a particular message.

4. Intended Audience

This document is intended primarily for implementors of protocol libraries layered on top of ICE. Typi-
cally, applications that wish to utilize ICE will make calls into individual protocol libraries rather than
directly make calls into the ICE library. However, some applications will have to make some initial calls
into the ICE library in order to accept ICE connections (for example, a session manager accepting connec-
tions from clients). But in general, protocol libraries should be designed to hide the inner details of ICE
from applications.

5. Header Files and Library Name

The header file<X11/ICE/ICElib.h> defines all of the ICElib data structures and function prototypes.
ICElib.h includes the header file<X11/ICE/ICE.h> which defines all of the ICElib constants. Protocol
libraries that need to read and write messages should include the header file<X11/ICE/ICEmsg.h>.

Applications should link against ICElib using-lICE.

6. Note on prefixes

The following name prefixes are used in the library to distinguish between a client that initiates aProtocol
Setupand a client which responds with aProtocol Reply:

- Ice Protocol Originator

- Ice Protocol Acceptor

− 1 −

Inter-Client Exchange Library X11, Release 6.1

7. Protocol Registration

In order for two clients to exchange messages for a given protocol, each side must register the protocol with
the ICE library. The purpose of registration is for each side to obtain a major opcode for the protocol, and
to provide callbacks for processing messages and handling authentication. There are two separate registra-
tion functions - one to handle the side that does aProtocol Setup, and one to handle the side that responds
with aProtocol Reply.

It is recommended that protocol registration occur before the two clients establish an ICE connection. If
protocol registration occurs after an ICE connection is created, there can be a brief interval of time in which
a Protocol Setupis received, but the protocol is not registered. If it is not possible to register a protocol
before the creation of an ICE connection, proper precautions should be taken to avoid the above race condi-
tion.

The function should be called for the client that initiates aProtocol Setup.

cc
hhh

int IceRegisterForProtocolSetup(protocol_name, vendor, release,
version_count, version_recs, auth_count, auth_names, auth_procs, io_error_proc)

char *protocol_name;
char *vendor;
char *release;
int version_count;
IcePoVersionRec *version_recs;
int auth_count;
char **auth_names;
IcePoAuthProc *auth_procs;
IceIOErrorProcio_error_proc;

protocol_name A string specifying the name of the protocol to register.

vendor A vendor string with semantics specified by the protocol.

release A release string with semantics specified by the protocol.

version_count The number of different versions of the protocol supported.

version_recs List of versions and associated callbacks.

auth_count The number of authentication methods supported.

auth_names The list of authentication methods supported.

auth_procs The list of authentication callbacks, one for each authentication method.

io_error_proc IO Error handler.cchhh

returns the major opcode reserved, or -1 if an error occurred. In order to actually activate the protocol, the
function needs to be called with this major opcode. Once the protocol is activated, all messages for the pro-
tocol should be sent using this major opcode.

A protocol library may support multiple versions of the same protocol.version_recsspecifies a list of sup-
ported versions of the protocol, prioritized in decreasing order of preference. Each version record consists
of a major and minor version of the protocol, as well as a callback to be used for processing incoming mes-
sages.

cc
hhh

typedef struct {
int major_version;
int minor_version;
IcePoProcessMsgProc process_msg_proc;

} IcePoVersionRec;cchhh

The callback is responsible for processing the set of messages that can be received by the client that initiated
the Protocol Setup. The details of how this callback works is described in the section titledCallbacks for

− 2 −

Inter-Client Exchange Library X11, Release 6.1

Processing Messages.

Authentication may be required before the protocol can become active. The protocol library must register
the authentication methods that it supports with the ICE library.auth_namesandauth_procsare a list of
authentication names and callbacks, prioritized in decreasing order of preference. The details of how the
callback works is described in the section titledAuthentication Methods.

The callback is invoked if the ICE connection unexpectedly breaks. Pass forio_error_proc if not interested
in being notified. See the section titledError Handling for more details on this callback.

The function should be called for the client that responds to aProtocol Setupwith aProtocol Reply.

cc
hhh

int IceRegisterForProtocolReply(protocol_name, vendor, release, version_count, version_recs,
auth_count, auth_names, auth_procs, host_based_auth_proc,
protocol_setup_proc, protocol_activate_proc, io_error_proc)

char *protocol_name;
char *vendor;
char *release;
int version_count;
IcePaVersionRec *version_recs;
int auth_count;
char **auth_names;
IcePaAuthProc *auth_procs;
IceHostBasedAuthProchost_based_auth_proc;
IceProtocolSetupProcprotocol_setup_proc;
IceProtocolActivateProcprotocol_activate_proc;
IceIOErrorProcio_error_proc;

protocol_name A string specifying the name of the protocol to register.

vendor A vendor string with semantics specified by the protocol.

release A release string with semantics specified by the protocol.

version_count The number of different versions of the protocol supported.

version_recs List of versions and associated callbacks.

auth_count The number of authentication methods supported.

auth_names The list of authentication methods supported.

auth_procs The list of authentication callbacks, one for each authentication method.

host_based_auth_proc
Host based authentication callback.

protocol_setup_proc
A callback to be invoked when authentication has succeeded for aProtocol Setup, before
theProtocol Replyis sent.

protocol_activate_proc
A callback to be invokedafter theProtocol Replyis sent.

io_error_proc IO Error handler.cchhh

returns the major opcode reserved, or -1 if an error occurred. The major opcode should be used in all sub-
sequent messages sent for this protocol.

A protocol library may support multiple versions of the same protocol.version_recsspecifies a list of sup-
ported versions of the protocol, prioritized in decreasing order of preference. Each version record consists
of a major and minor version of the protocol, as well as a callback to be used for processing incoming mes-
sages.

− 3 −

Inter-Client Exchange Library X11, Release 6.1

cc
hhh

typedef struct {
int major_version;
int minor_version;
IcePaProcessMsgProc process_msg_proc;

} IcePaVersionRec;cchhh

The callback is responsible for processing the set of messages that can be received by the client that
accepted theProtocol Setup. The details of how this callback works is described in the section titledCall-
backs for Processing Messages.

Authentication may be required before the protocol can become active. The protocol library must register
the authentication methods that it supports with the ICE library.auth_namesandauth_procsare a list of
authentication names and callbacks, prioritized in decreasing order of preference. The details of how the
callback works is described in the section titledAuthentication Methods.

If authentication fails and the client attempting to initiate theProtocol Setuphas not required authentication,
the callback is invoked with the host name of the originating client. If the callback returns theProtocol
Setupwill succeed, even though the original authentication failed. Note that authentication can effectively
be disabled by registering an which always returns If no host based authentication is allowed, pass for
host_based_auth_proc.

cc
hhh

typedef Bool (*IceHostBasedAuthProc) (); Bool HostBasedAuthProc(host_name)
char *host_name;

host_name The host name of the client that sent theProtocol Setup.cchhh

host_nameis a string of the form "protocol/hostname", whereprotocol is one of {tcp, decnet, local}.

SinceProtocol Setupsand authentication happen "behind the scenes" via callbacks, the protocol library
needs some way of being notified when theProtocol Setuphas completed. This occurs in two phases. In
the first phase, the callback is invoked after authentication has successfully completed,before the ICE
library sends aProtocol Reply. Any resources required for this protocol should be allocated at this time. If
the returns a successful status, the ICE library will send theProtocol Replyand then invoke the callback.
Otherwise, an error will be sent to the other client in response to theProtocol Setup.

The is an optional callback, and should be registered only if the protocol library intends to generate a mes-
sage immediately following theProtocol Reply. Pass forprotocol_activate_procif not interested in this
callback.

cc
hhh

typedef Status (*IceProtocolSetupProc) (); Status ProtocolSetupProc(ice_conn, major_version,
minor_version, vendor, release,

client_data_ret, failure_reason_ret)
IceConnice_conn;
int major_version;
int minor_version;
char *vendor;
char *release;
IcePointer *client_data_ret;
char **failure_reason_ret;

ice_conn The ICE connection object.

major_version The major version of the protocol.

minor_version The minor version of the protocol.

vendor The vendor string registered by the protocol originator.

release The release string registered by the protocol originator.

− 4 −

Inter-Client Exchange Library X11, Release 6.1

client_data_ret Client data to be set by callback.

failure_reason_ret Failure reason returned.cchhh

The pointer stored in theclient_data_retargument will be passed to the callback whenever a message has
arrived for this protocol on the ICE connection.

Thevendorandreleasestrings should be freed with free() when they are no longer needed.

If a failure occurs, the should return a zero status, as well as allocate and return a failure reason string in
failure_reason_ret. The ICE library will be responsible for freeing this memory.

The discussed above is defined as follows:

cc
hhh

typedef void (*IceProtocolActivateProc)();

void ProtocolActivateProc(ice_conn, client_data)
IceConnice_conn;
IcePointerclient_data;

ice_conn The ICE connection object.

client_data The client data set in the callback.cchhh

The callback is invoked if the ICE connection unexpectedly breaks. Pass forio_error_proc if not interested
in being notified. See the section titledError Handling for more details on this callback.

7.1. Callbacks for Processing Messages

When an application detects that there is a new data to read on an ICE connection (via select), it calls the
function (discussed in the section titledProcessing Messages). When reads an ICE message header with a
major opcode other than zero (reserved for the ICE protocol), it needs to call a function which will read the
rest of the message, unpack it, and process it accordingly.

If the message arrives at the client which initiated theProtocol Setup, the callback is invoked.

cc
hhh

typedef void (*IcePoProcessMsgProc)(); void PoProcessMsgProc(ice_conn, client_data, opcode, length,
swap, reply_wait, reply_ready_ret)

IceConnice_conn;
IcePointerclient_data;
int opcode;
unsigned longlength;
Bool swap;
IceReplyWaitInfo *reply_wait;
Bool *reply_ready_ret;

− 5 −

Inter-Client Exchange Library X11, Release 6.1

ice_conn The ICE connection object.

client_data Client data associated with this protocol on the ICE connection.

opcode The minor opcode of the message.

length The length (in 8 byte units) of the message beyond the ICE header.

swap A flag which indicates if byte swapping is necessary.

reply_wait Indicates if the invoking client is waiting for a reply.

reply_ready_ret If set to a reply is ready.cchhh

If the message arrives at the client which accepted theProtocol Setup, the callback is invoked.

cc
hhh

typedef void (*IcePaProcessMsgProc)(); void PaProcessMsgProc(ice_conn, client_data, opcode, length,
swap)

IceConnice_conn;
IcePointerclient_data;
int opcode;
unsigned longlength;
Bool swap;

ice_conn The ICE connection object.

client_data Client data associated with this protocol on the ICE connection.

opcode The minor opcode of the message.

length The length (in 8 byte units) of the message beyond the ICE header.

swap A flag which indicates if byte swapping is necessary.cchhh

In order to read the message, both of the above callbacks should use the macros defined in the section of
this document titledReading ICE Messages. Note that byte swapping may be necessary. As a conveni-
ence, the length field in the ICE header will be swapped by ICElib if necessary.

In both of the above callbacks,client_datais a pointer to client data that was registered atProtocol Setup
time. In the case of the client data was set in the call to In the case of the client data was set in the callback.

The callback needs to check thereply_waitargument. Ifreply_wait is the ICE library expects the function
to pass the message to the client via a callback. For example, if this is a Session ManagementSave Yourself
message, this function should notify the client of theSave Yourselfvia a callback. The details of how such
a callback would be defined is implementation dependent.

However, if reply_wait is not then the client is waiting for a reply or an error for a message it previously
sent. reply_wait is of type

cc
hhh

typedef struct {
unsigned long sequence_of_request;
int major_opcode_of_request;
int minor_opcode_of_request;
IcePointer reply;

} IceReplyWaitInfo;cchhh

contains the major/minor opcodes and sequence number of the message for which a reply is being awaited.
It also contains a pointer to the reply message to be filled in (the protocol library should cast this to the
appropriate reply type). In most cases, the reply will have some fixed-size part, and the client waiting for
the reply will have provided a pointer to a structure to hold this fixed-size data. If there is variable-length
data, it would be expected that the callback will have to allocate additional memory and store pointer(s) to
that memory in the fixed-size structure. If the entire data is variable length (e.g., a single variable-length
string), then the client waiting for the reply would probably just pass a pointer to fixed-size space to hold a

− 6 −

Inter-Client Exchange Library X11, Release 6.1

pointer, and the callback would allocate the storage and store the pointer. It is the responsibility of the
client receiving the reply to free any memory allocated on its behalf.

If reply_wait is not and has a reply or error to return in response to thisreply_wait (i.e. no callback was
generated), then thereply_ready_retargument should be set to Note that an error should only be returned if
it corresponds to the reply being waited for. Otherwise, the should either handle the error internally, or
invoke an error handler for its library.

If reply_wait is then care must be taken not to store any value inreply_ready_retsince this pointer may
also be

The callback, on the other hand, should always pass the message to the client via a callback. For example,
if this is a Session ManagementInteract Requestmessage, this function should notify the client of the
Interact Requestvia a callback.

The reason the callback does not have areply_wait like does, is because a process that is acting as a
"server" should never block for a reply (infinite blocking can occur if the connecting client does not act
properly, denying access to other clients).

7.2. Authentication Methods

As discussed earlier, a protocol library must register the authentication methods that it supports with the
ICE library. For each authentication method, there are two callbacks that may be registered - one to handle
the side that initiates aProtocol Setup, and one to handle the side that accepts or rejects this request.

is the callback invoked for the client that initiated theProtocol Setup. This callback must be able to
respond to the initialAuthentication Requiredmessage or subsequentAuthentication Next Phasemessages
sent by the other client.

cc
hhh

typedef IcePoAuthStatus (*IcePoAuthProc)(); IcePoAuthStatus PoAuthProc(ice_conn, auth_state_ptr,
clean_up, swap,

auth_datalen, auth_data, reply_datalen_ret, reply_data_ret, error_string_ret)
IceConnice_conn;
IcePointer *auth_state_ptr;
Bool clean_up;
Bool swap;
int auth_datalen;
IcePointerauth_data;
int * reply_datalen_ret;
IcePointer *reply_data_ret;
char **error_string_ret;

ice_conn The ICE connection object.

auth_state_ptr A pointer to state for use by the authentication callback procedure.

clean_up If authentication is over, and the function should clean up any state it was maintaining.
The last 6 arguments should be ignored.

swap If the auth_datamay have to be byte swapped (depending on its contents).

auth_datalen The length (in bytes) of the authenticator data.

auth_data The data from the authenticator.

reply_datalen_ret The length (in bytes) of the reply data returned.

reply_data_ret The reply data returned.

error_string_ret If the authentication procedure encounters an error during authentication, it should allo-
cate and return an error string.cchhh

Authentication may require several phases, depending on the authentication method. As a result, the may
be called more than once when authenticating a client, and some state will have to be maintained between

− 7 −

Inter-Client Exchange Library X11, Release 6.1

each invocation. At the start of eachProtocol Setup, *auth_state_ptris and the function should initialize its
state and set this pointer. In subsequent invocations of the callback, the pointer should be used to get at any
state previously stored by the callback.

If needed, the network ID of the client accepting theProtocol Setupcan be obtained by calling the function.

ICElib will be responsible for freeing thereply_data_retanderror_string_retpointers with free().

Theauth_datapointer may point to a volatile block of memory. If the data must be kept beyond this invo-
cation of the callback, be sure to make a copy of it.

The should return one of four values:

lw(2i) lw(5i). T{ T} T{ A reply is available T}

T{ T} T{ Authentication rejected T}

T{ T} T{ Authentication failed T}

T{ T} T{ Done cleaning up T}

is the callback invoked for the client that received theProtocol Setup.

cc
hhh

typedef IcePaAuthStatus (*IcePaAuthProc) (); IcePaAuthStatus PaAuthProc(ice_conn, auth_state_ptr,
swap,

auth_datalen, auth_data, reply_datalen_ret, reply_data_ret, error_string_ret)
IceConnice_conn;
IcePointer *auth_state_ptr;
Bool swap;
int auth_datalen;
IcePointerauth_data;
int * reply_datalen_ret;
IcePointer *reply_data_ret;
char **error_string_ret;

ice_conn The ICE connection object.

auth_state_ptr A pointer to state for use by the authentication callback procedure.

swap If the auth_datamay have to be byte swapped (depending on its contents).

auth_datalen The length (in bytes) of the protocol originator authentication data.

auth_data The authentication data from the protocol originator.

reply_datalen_ret The length of the authentication data returned.

reply_data_ret The authentication data returned.

error_string_ret If authentication is rejected or fails, an error string is returned.cchhh

Authentication may require several phases, depending on the authentication method. As a result, the may
be called more than once when authenticating a client, and some state will have to be maintained between
each invocation. At the start of eachProtocol Setup, auth_datalenis zero, *auth_state_ptris and the func-
tion should initialize its state and set this pointer. In subsequent invocations of the callback, the pointer
should be used to get at any state previously stored by the callback.

If needed, the network ID of the client accepting theProtocol Setupcan be obtained by calling the function.

Theauth_datapointer may point to a volatile block of memory. If the data must be kept beyond this invo-
cation of the callback, be sure to make a copy of it.

ICElib will be responsible for freeing thereply_data_retanderror_string_retpointers with free().

The should return one of four values:

− 8 −

Inter-Client Exchange Library X11, Release 6.1

lw(2i) lw(5i). T{ T} T{ Continue (or start) authentication T}

T{ T} T{ Authentication accepted T}

T{ T} T{ Authentication rejected T}

T{ T} T{ Authentication failed T}

8. ICE Connections

In order for two clients to establish an ICE connection, one client has to be "waiting" for connections, and
the other client has to initiate the connection. Most clients will initiate connections, so we discuss that first.

8.1. Opening an ICE Connection

In order to open an ICE connection with another client (that is waiting for connections), call the function.

cc
hhh

IceConn IceOpenConnection(network_ids_list, context, must_authenticate, major_opcode_check,
error_length, error_string_ret)

char *network_ids_list;
IcePointercontext;
Bool must_authenticate;
int major_opcode_check;
int error_length;
char *error_string_ret;

network_ids_list Specifies the network ID(s) of the other client.

context A pointer to an opaque object, or NULL. Used to determine if an ICE connection
can be shared (see below).

must_authenticate If the other client may not bypass authentication.

major_opcode_checkUsed to force a new ICE connection to be created (see below).

error_length Length of theerror_string_retargument passed in.

error_string_ret Returns a null terminated error message, if any.error_string_retpoints to user sup-
plied memory. No more thanerror_lengthbytes are used.cchhh

returns an opaque ICE connection object if it succeeds, otherwise.

network_ids_listcontains a list of network IDs separated by commas. An attempt will be made to use the
first network ID. If that fails, an attempt will be made using the second network ID, and so on. Each net-
work ID has the form...

lw(0.25i) lw(2.5i) lw(1i). tcp/<hostname>:<portnumber>or
decnet/<hostname>::<objname> or local/<hostname>:<path>

Most protocol libraries will have some sort of "open" function which should internally make a call into
When is called, it may be possible to use a previously opened ICE connection (if the target client is the
same). However, there are cases in which shared ICE connections are not desired.

Thecontextargument is used to determine if an ICE connection can be shared. Ifcontextis then the caller
is always willing to share the connection. Ifcontextis not then the caller is not willing to use a previously
opened ICE connection that has a different non-NULL context associated with it.

In addition, ifmajor_opcode_checkcontains a non-zero major opcode value, a previously created ICE con-
nection will be used only if the major opcode is not active on the connection. This can be used to force
multiple ICE connections between two clients for the same protocol.

Any authentication requirements are handled internally by the ICE library. The method by which the
authentication data is obtained is implementation dependent.†
hhhhhhhhhhhhhhhhhh

† The X Consortium’s ICElib implementation uses an .ICEauthority file (see Appendix A).

− 9 −

Inter-Client Exchange Library X11, Release 6.1

After is called, the client is ready to send aProtocol Setup(provided that was called), or receive aProtocol
Setup(provided that was called).

8.2. Listening for ICE Connections

Clients wishing to accept ICE connections must first call so they can listen for connections. A list of
opaque "listen" objects are returned, one for each type of transport method that is available (for example,
Unix Domain, TCP, DECnet, etc...).

cc
hhh

Status IceListenForConnections(count_ret, listen_objs_ret, error_length, error_string_ret)
int *count_ret;
IceListenObj **listen_objs_ret;
int error_length;
char *error_string_ret;

count_ret The number of listen objects returned.

listen_objs_ret Returns a list of opaque listen objects.

error_length The length of theerror_string_retargument passed in.

error_string_ret Returns a null terminated error message, if any.error_string_retpoints to user supplied
memory. No more thanerror_lengthbytes are used.cchhh

The return value of is zero for failure, and a positive value for success.

Call to close and free the listen objects.

cc
hhh

void IceFreeListenObjs(count, listen_objs)
int count;
IceListenObj *listen_objs;

count The number of listen objects.

listen_objs The listen objects.cchhh

In order to detect a new connection on a listen object, select() must be called on the descriptor associated
with the listen object. To obtain the descriptor, call the function.

cc
hhh

int IceGetListenConnectionNumber(listen_obj)
IceListenObjlisten_obj;

listen_obj The listen object.cchhh

To obtain the network ID string associated with a listen object, call the function.

cc
hhh

char *IceGetListenConnectionString(listen_obj)
IceListenObjlisten_obj;

listen_obj The listen object.cchhh

A network ID has the form...

lw(0.25i) lw(2.5i) lw(1i). tcp/<hostname>:<portnumber>or
decnet/<hostname>::<objname> or local/<hostname>:<path>

To compose a string containing a list of network IDs separated by commas (the format recognized by call
the function.

− 10 −

Inter-Client Exchange Library X11, Release 6.1

cc
hhh

char *IceComposeNetworkIdList(count, listen_objs)
int count;
IceListenObj *listen_objs;

count The number of listen objects.

listen_objs The listen objects.cchhh

8.3. Host Based Authentication for ICE Connections

If authentication fails when a client attempts to open an ICE connection, and the initiating client has not
required authentication, a host based authentication procedure may be invoked to provide a last chance for
the client to connect. Each listen object has such a callback associated with it, and this callback is set using
the function.

cc
hhh

void IceSetHostBasedAuthProc(listen_obj, host_based_auth_proc)
IceListenObjlisten_obj;
IceHostBasedAuthProchost_based_auth_proc;

listen_obj The listen object.

host_based_auth_procThe host based authentication procedure.cchhh

By default, each listen object has no host based authentication procedure associated with it. Passing for
host_based_auth_procturns off host based authentication if it was previously set.

− 11 −

Inter-Client Exchange Library X11, Release 6.1

cc
hhh

typedef Bool (*IceHostBasedAuthProc) (); Bool HostBasedAuthProc(host_name)
char *host_name;

host_name The host name of the client that tried to open an ICE connection.cchhh

host_nameis a string of the form "protocol/hostname" whereprotocol is one of {tcp, decnet, local}.

If returns access will be granted, even though the original authentication failed. Note that authentication can
effectively be disabled by registering an which always returns

Host based authentication is also allowed atProtocol Setuptime. The callback is specified in the function
discussed earlier.

8.4. Accepting ICE Connections

After a connection attempt is detected on a listen object returned by should be called. This returns a new
opaque ICE connection object.

cc
hhh

IceConn IceAcceptConnection(listen_obj, status_ret)
IceListenObjlisten_obj;
IceAcceptStatus *status_ret;

listen_obj The listen object on which a new connection was detected.

status_ret Return status information.cchhh

Thestatus_retargument is set to one of the following values:

lw(2i) lw(4i). T{ T} T{ The accept operation succeeded. The function returns a new connection object.
T}

T{ T} T{ The accept operation failed. The function returns NULL. T}

T{ T} T{ A memory allocation failed. The function returns NULL. T}

In general, in order to detect new connections, the application will call select() on the file descriptors associ-
ated with the listen objects. When a new connection is detected, the function should be called. may return a
new ICE connection that is in a "pending" state. This is because before the connection can become valid,
authentication may be necessary. Since the ICE library cannot block and wait for the connection to become
valid (infinite blocking can occur if the connecting client does not act properly), the application must wait
for the connection status to become "valid".

The following pseudo-code demonstrates how connections are accepted:

− 12 −

Inter-Client Exchange Library X11, Release 6.1

new_ice_conn = IceAcceptConnection (listen_obj);
status = IceConnectionStatus (new_ice_conn);
time_start = time_now;

while (status == IceConnectPending)
{

select() on {new_ice_conn, all open connections}

for (each ice_conn in the list of open connections)
if (data ready on ice_conn)
{

status = IceProcessMessages (ice_conn, NULL, NULL);
if (status == IceProcessMessagesIOError)

IceCloseConnection (ice_conn);
}

if (data ready on new_ice_conn)
{

/*
* IceProcessMessages is called until the connection
* is non-pending. Doing so handles the connection
* setup request and any authentication requirements.
*/

IceProcessMessages (new_ice_conn, NULL, NULL);
status = IceConnectionStatus (new_ice_conn);

}
else
{

if (time_now - time_start > MAX_WAIT_TIME)
status = IceConnectRejected;

}
}

if (status == IceConnectAccepted)
{

Add new_ice_conn to the list of open connections
}
else
{

IceCloseConnection (new_ice_conn);
}

After is called and the connection has been validated, the client is ready to receive aProtocol Setup(pro-
vided that was called), or send aProtocol Setup(provided that was called).

8.5. Closing ICE Connections

To close an ICE connection created with or call the function.

cc
hhh

IceCloseStatus IceCloseConnection(ice_conn)
IceConnice_conn;

ice_conn The ICE connection to close.cchhh

In order to actually close an ICE connection, the following conditions must be met:

- Theopen reference countmust have reached zero on this ICE connection. When is called, it tries to
use a previously opened ICE connection. If it is able to use an existing connection, it increments the
open reference counton the connection by one. So in order to close an ICE connection, each call to
must be matched with a call to The connection can be closed only on the last call to

− 13 −

Inter-Client Exchange Library X11, Release 6.1

- Theactive protocol countmust have reached zero. Each time aProtocol Setupsucceeds on the con-
nection theactive protocol countis incremented by one. When the client no longer expects to use the
protocol on the connection, the function should be called, which decrements theactive protocol count
by one (see theProtocol Setup and Shutdownsection).

- If shutdown negotiation is enabled on the connection, the client on the other side of the ICE connec-
tion must agree to have the connection closed.

returns one of the following values:

lw(2i) lw(4i). T{ T} T{ The ICE connection was closed at this time. The watch procedures were
invoked and the connection was freed. T}

T{ T} T{ An IO error had occurred on the connection, but is being called within a nested The watch pro-
cedures have been invoked at this time, but the connection will be freed as soon as possible (when the nest-
ing level reaches zero and returns a status of T}

T{ T} T{ The connection was not closed at this time because it is being used by other active protocols.
T}

T{ T} T{ The connection was not closed at this time and shutdown negotiation started with the client on
the other side of the ICE connection. When the connection is actually closed, will return a status of T}

When it is known that the client on the other side of the ICE connection has terminated the connection
without initiating shutdown negotiation, the function should be called to turn off shutdown negotiation.
This will prevent from writing to a broken connection.

cc
hhh

void IceSetShutdownNegotiation(ice_conn, negotiate)
IceConnice_conn;
Bool negotiate;

ice_conn A valid ICE connection object.

negotiate If shutdown negotiating will be turned off.cchhh

In order to check the shutdown negotiation status of an ICE connection, call the function.

cc
hhh

Bool IceCheckShutdownNegotiation(ice_conn)
IceConnice_conn;

ice_conn A valid ICE connection object.cchhh

returns if shutdown negotiation will take place on the connection, otherwise. Negotiation is on by default
for a connection. It can only be changed with the function.

8.6. Connection Watch Procedures

In order to add a watch procedure which will be called each time ICElib opens a new connection via or or
closes a connection via call the function.

cc
hhh

Status IceAddConnectionWatch(watch_proc, client_data)
IceWatchProcwatch_proc;
IcePointerclient_data;

watch_proc The watch procedure to invoke when ICElib opens or closes a connection.

client_data This pointer will be passed to the watch procedure.cchhh

The return value of is zero for failure, and a positive value for success.

− 14 −

Inter-Client Exchange Library X11, Release 6.1

Note that several calls to might share the same ICE connection. In such a case, the watch procedure is only
invoked when the connection is first created (after authentication succeeds). Similarly, since connections
might be shared, the watch procedure is called only if actually closes the connection (right before the
IceConn is freed).

The watch procedures are very useful for applications which need to add a file descriptor to a select mask
when a new connection is created, and remove the file descriptor when the connection is destroyed. Since
connections are shared, knowing when to add and remove the file descriptor from the select mask would be
difficult without the watch procedures.

Multiple watch procedures may be registered with the ICE library. No assumptions should be made about
their order of invocation.

If one or more ICE connections were already created by the ICE library at the time the watch procedure is
registered, the watch procedure will instantly be invoked for each of these ICE connections (with theopen-
ing flag set to

The watch procedure is of type

cc
hhh

typedef void (*IceWatchProc)();

void WatchProc(ice_conn, client_data, opening, watch_data)
IceConnice_conn;
IcePointerclient_data;
Bool opening;
IcePointer *watch_data;

ice_conn The opened or closed ICE connection. Call to get the file descriptor associated with this
connection.

client_data Client data specified in the call to

opening If the connection is being opened. If the connection is being closed.

watch_data Can be used to save a pointer to client data.cchhh

If openingis the client should set the *watch_datapointer to any data it may need to save until the connec-
tion is closed and the watch procedure is invoked again withopeningset to

To remove a watch procedure, call the function.

− 15 −

Inter-Client Exchange Library X11, Release 6.1

cc
hhh

void IceRemoveConnectionWatch(watch_proc, client_data)
IceWatchProcwatch_proc;
IcePointerclient_data;

watch_proc The watch procedure that was passed to

client_data Theclient_datapointer that was passed tocchhh

9. Protocol Setup and Shutdown

In order to activate a protocol on a given ICE connection, call the function.

cc
hhh

IceProtocolSetupStatus IceProtocolSetup(ice_conn, my_opcode, client_data, must_authenticate,
major_version_ret, minor_version_ret, vendor_ret, release_ret, error_length,

error_string_ret)
IceConnice_conn;
int my_opcode;
IcePointerclient_data;
Bool must_authenticate;
int *major_version_ret;
int *minor_version_ret;
char **vendor_ret;
char **release_ret;
int error_length;
char *error_string_ret;

ice_conn A valid ICE connection object.

my_opcode The major opcode of the protocol to be set up, as returned by

client_data The client data stored in this pointer will be passed to the callback.

must_authenticateIf the other client may not bypass authentication.

major_version_retThe major version of the protocol to be used is returned.

minor_version_retThe minor version of the protocol to be used is returned.

vendor_ret The vendor string specified by the protocol acceptor.

release_ret The release string specified by the protocol acceptor.

error_length Specifies the length of theerror_string_retargument passed in.

error_string_ret Returns a null terminated error message, if any.error_string_retpoints to user supplied
memory. No more thanerror_lengthbytes are used.cchhh

Thevendor_retandrelease_retstrings should be freed with free() when no longer needed.

returns one of the following values:

lw(2i) lw(4i). T{ T} T{ major_version_ret, minor_version_ret, vendor_ret, release_retare set. T}

T{ or
T} T{ Check error_string_ret for failure reason.major_version_ret, minor_version_ret, vendor_ret,
release_retare NOT set. T}

T{ T} T{ This protocol is already active on this connection.major_version_ret, minor_version_ret,
vendor_ret, release_retare NOT set. T}

In order to notify the ICE library when a given protocol will no longer be used on an ICE connection, call
the function.

− 16 −

Inter-Client Exchange Library X11, Release 6.1

cc
hhh

Status IceProtocolShutdown(ice_conn, major_opcode)
IceConnice_conn;
int major_opcode;

ice_conn A valid ICE connection object.

major_opcode The major opcode of the protocol to shut down.cchhh

The return value of is zero for failure, and a positive value for success.

Failure will occur if the major opcode was never registered OR the protocol of the major opcode was never
"activated" on the connection. By "activated" we mean that aProtocol Setupsucceeded on the connection.
Note that ICE does not define how each sub-protocol triggers a protocol shutdown.

10. Processing Messages

In order to process incoming messages on an ICE connection, the function should be called.

cc
hhh

IceProcessMessagesStatus IceProcessMessages(ice_conn, reply_wait, reply_ready_ret)
IceConnice_conn;
IceReplyWaitInfo *reply_wait;
Bool *reply_ready_ret;

ice_conn A valid ICE connection object.

reply_wait Indicates if a reply is being waited for.

reply_ready_ret If set to on return, a reply is ready.cchhh

This function is used in two ways. In the first, a client may generate a message and "block" by calling
repeatedly until it gets its reply. In the second case, a client calls withreply_wait set to in response to
select() showing that there is data to read on the ICE connection. The ICE library may process zero or more
complete messages. Note that messages which are not "blocked" for are always processed by invoking call-
backs.

contains the major/minor opcodes and sequence number of the message for which a reply is being awaited.
It also contains a pointer to the reply message to be filled in (the protocol library should cast this to the
appropriate reply type). In most cases, the reply will have some fixed-size part, and the client waiting for
the reply will have provided a pointer to a structure to hold this fixed-size data. If there is variable-length
data, it would be expected that the callback will have to allocate additional memory and store pointer(s) to
that memory in the fixed-size structure. If the entire data is variable length (e.g., a single variable-length
string), then the client waiting for the reply would probably just pass a pointer to fixed-size space to hold a
pointer, and the callback would allocate the storage and store the pointer. It is the responsibility of the
client receiving the reply to free up any memory allocated on its behalf.

cc
hhh

typedef struct {
unsigned long sequence_of_request;
int major_opcode_of_request;
int minor_opcode_of_request;
IcePointer reply;

} IceReplyWaitInfo;cchhh

If reply_wait is not and has a reply or error to return in response to thisreply_wait (i.e. no callback was
generated), then thereply_ready_retargument will be set to

If reply_wait is then the caller may also pass forreply_ready_retand be guaranteed that no value will be
stored in this pointer.

− 17 −

Inter-Client Exchange Library X11, Release 6.1

returns one of the following values:

lw(2.5i) lw(4i). T{ T} T{ No error occurred. T}

T{ T} T{ An IO error occurred. The caller must explicitly close the connection by calling T}

T{ T} T{ The ICE connection has been closed (closing of the connection was deferred because of shut-
down negotiation, or because the nesting level was not zero). Do not attempt to access the ICE connection
at this point, since it has been freed. T}

11. Ping

To send aPing message to the client on the other side of the ICE connection, call the function.

cc
hhh

Status IcePing(ice_conn, ping_reply_proc, client_data)
IceConnice_conn;
IcePingReplyProcping_reply_proc;
IcePointerclient_data;

ice_conn A valid ICE connection object.

ping_reply_procThe callback to invoke when thePing reply arrives.

client_data This pointer will be passed to the callback.cchhh

The return value of is zero for failure, and a positive value for success.

When processes the Ping reply, it will invoke the callback.

cc
hhh

typedef void (*IcePingReplyProc)();

void PingReplyProc(ice_conn, client_data)
IceConnice_conn;
IcePointerclient_data;

ice_conn The ICE connection object.

client_data The client data specified in the call tocchhh

12. Informational Functions

cc
hhh

IceConnectStatus IceConnectionStatus(ice_conn)
IceConnice_conn;cchhh

Returns the status of an ICE connection. The possible return values are:

lw(2i) lw(4i). T{ T} T{ The connection is not valid yet (i.e. authentication is taking place). Only
relevant to connections created by T}

T{ T} T{ The connection has been accepted. Only relevant to connections created by T}

T{ T} T{ The connection had been rejected (i.e. authentication failed). Only relevant to connections
created by T}

T{ T} T{ An IO error has occurred on the connection. T}

− 18 −

Inter-Client Exchange Library X11, Release 6.1

cc
hhh

char *IceVendor(ice_conn)
IceConnice_conn;cchhh

Returns the ICE library vendor identification for the other side of the connection. The string should be
freed with a call to free() when no longer needed.

cc
hhh

char *IceRelease(ice_conn)
IceConnice_conn;cchhh

Returns the release identification of the ICE library on the other side of the connection. The string should
be freed with a call to free() when no longer needed.

cc
hhh

int IceProtocolVersion(ice_conn)
IceConnice_conn;cchhh

Returns the major version of the ICE protocol on this connection.

cc
hhh

int IceProtocolRevision(ice_conn)
IceConnice_conn;cchhh

Returns the minor version of the ICE protocol on this connection.

cc
hhh

int IceConnectionNumber(ice_conn)
IceConnice_conn;cchhh

Returns the file descriptor of this ICE connection.

cc
hhh

char *IceConnectionString(ice_conn)
IceConnice_conn;cchhh

Returns the network ID of the client which accepted this connection. The string should be freed with a call
to free() when no longer needed.

cc
hhh

unsigned long IceLastSentSequenceNumber(ice_conn)
IceConnice_conn;cchhh

Returns the sequence number of the last message sent on this ICE connection.

cc
hhh

unsigned long IceLastReceivedSequenceNumber(ice_conn)
IceConnice_conn;cchhh

Returns the sequence number of the last message received on this ICE connection.

cc
hhh

Bool IceSwapping(ice_conn)
IceConnice_conn;cchhh

Returns if byte swapping is necessary when reading messages on the ICE connection.

− 19 −

Inter-Client Exchange Library X11, Release 6.1

cc
hhh

IcePointer IceGetContext(ice_conn)
IceConnice_conn;cchhh

Returns the context associated with a connection created by

13. ICE Messages

All ICE messages have a standard 8 byte header. The ICElib macros which read and write messages rely on
the following naming convention for message headers:

CARD8 major_opcode;
CARD8 minor_opcode;
CARD8 data[2];
CARD32 length B32;

The 3rd and 4th bytes of the message header can be used as needed. The length field is specified inunits of
8 bytes.

13.1. Sending ICE Messages

The ICE library maintains an output buffer used for generating messages. Protocol libraries layered on top
of ICE may choose to batch messages together and flush the output buffer at appropriate times.

If an IO error has occurred on an ICE connection, all write operations will be ignored. Refer to the section
titled Error Handling for more discussion on handling IO errors.

To get the size of the ICE output buffer, call the function.

cc
hhh

int IceGetOutBufSize(ice_conn)
IceConnice_conn;

ice_conn A valid ICE connection object.cchhh

To flush the ICE output buffer, call the function.

cc
hhh

IceFlush(ice_conn)
IceConnice_conn;

ice_conn A valid ICE connection object.cchhh

Note that the output buffer may be implicitly flushed if there is insufficient space to generate a message.

The following macros can be used to generate ICE messages:

cc
hhh

IceGetHeader(ice_conn, major_opcode, minor_opcode, header_size, <C_data_type>, pmsg)
IceConnice_conn;
int major_opcode;
int minor_opcode;
int header_size;
<C_data_type> *pmsg;

ice_conn A valid ICE connection object.

major_opcode The major opcode of the message.

minor_opcode The minor opcode of the message.

header_size The size of the message header (in bytes).

<C_data_type> The actual C data type of the message header.

− 20 −

Inter-Client Exchange Library X11, Release 6.1

pmsg The message header pointer. After this macro is called, the library can store data in the
message header.cchhh

is used to set up a message header on an ICE connection. It sets the major and minor opcodes of the mes-
sage, and initializes the message’s length to the length of the header. If additional variable length data fol-
lows, the message’s length field should be updated.

cc
hhh

IceGetHeaderExtra(ice_conn, major_opcode, minor_opcode, header_size, extra, <C_data_type>, pmsg,
pdata)

IceConnice_conn;
int major_opcode;
int minor_opcode;
int header_size;
int extra;
<C_data_type> *pmsg;
char *pdata;

ice_conn A valid ICE connection object.

major_opcode The major opcode of the message.

minor_opcode The minor opcode of the message.

header_size The size of the message header (in bytes).

extra The size of the extra data beyond the header (in 8 byte units).

<C_data_type> The actual C data type of the message header.

pmsg The message header pointer. After this macro is called, the library can store data in the
message header.

pdata Returns a pointer to the ICE output buffer which points immediately after the message
header. The variable length data should be stored here. If there was not enough room in
the ICE output buffer,pdata is set tocchhh

is used to generate a message with a fixed (and relatively small) amount of variable length data. The com-
plete message must fit in the ICE output buffer.

− 21 −

Inter-Client Exchange Library X11, Release 6.1

cc
hhh

IceSimpleMessage(ice_conn, major_opcode, minor_opcode)
IceConnice_conn;
int major_opcode;
int minor_opcode;

ice_conn A valid ICE connection object.

major_opcode The major opcode of the message.

minor_opcode The minor opcode of the message.cchhh

is used to generate a message which is identical in size to the ICE header message, and has no additional
data.

cc
hhh

IceErrorHeader(ice_conn, offending_major_opcode, offending_minor_opcode, offending_sequence_num,
severity, error_class, data_length)

IceConnice_conn;
int offending_major_opcode;
int offending_minor_opcode;
int offending_sequence_num;
int severity;
int error_class;
int data_length;

ice_conn A valid ICE connection object.

offending_major_opcode
The major opcode of the protocol in which an error was detected.

offending_minor_opcode
The minor opcode of the protocol in which an error was detected.

offending_sequence_num
The sequence number of the message that caused the error.

severity or

error_class The error class. See below.

data_length Length of data (in 8 byte units) to be written after the header.cchhh

sets up an error message header.

Note that the two clients connected by ICE may be using different major opcodes for a given protocol. The
offending_major_opcodepassed to this macro is the major opcode of the protocol for the client sending the
error message.

Generic errors which are common to all protocols have classes in the range 0x8000..0xFFFF. See the
Inter-Client Exchange Protocoldocument for more details.

lw(1i) lw(1i). T{ T} T{ 0x8000 T}

T{ T} T{ 0x8001 T}

T{ T} T{ 0x8002 T}

T{ T} T{ 0x8003 T}

Per-protocol errors have classes in the range 0x0000-0x7fff.

To write data to an ICE connection, use the macro. If the data fits into the ICE output buffer, it is copied
there. Otherwise, the ICE output buffer is flushed and the data is directly sent.

This macro is used in conjunction with and

− 22 −

Inter-Client Exchange Library X11, Release 6.1

cc
hhh

IceWriteData(ice_conn, bytes, data)
IceConnice_conn;
int bytes;
char *data;

ice_conn A valid ICE connection object.

bytes The number of bytes to write.

data The data to write.cchhh

To write data as 16 bit quantities, use the macro.

cc
hhh

IceWriteData16(ice_conn, bytes, data)
IceConnice_conn;
int bytes;
short *data;

ice_conn A valid ICE connection object.

bytes The number of bytes to write.

data The data to write.cchhh

To write data as 32 bit quantities, use the macro.

cc
hhh

IceWriteData32(ice_conn, bytes, data)
IceConnice_conn;
int bytes;
long *data;

ice_conn A valid ICE connection object.

bytes The number of bytes to write.

data The data to write.cchhh

To bypass copying data to the ICE output buffer, use the to directly send data over the network connection.
If necessary, the ICE output buffer is first flushed.

cc
hhh

IceSendData(ice_conn, bytes, (char *) data)
IceConnice_conn;
int bytes;
char *data;

ice_conn A valid ICE connection object.

bytes The number of bytes to send.

data The data to send.cchhh

To force 32 or 64 bit alignment, use the macro. A maximum of 7 pad bytes can be specified.

cc
hhh

IceWritePad(ice_conn, bytes)
IceConnice_conn;
int bytes;

ice_conn A valid ICE connection object.

bytes The number of pad bytes.

− 23 −

Inter-Client Exchange Library X11, Release 6.1

cchhh

13.2. Reading ICE Messages

The ICE library maintains an input buffer used for reading messages. If the ICE library chooses to perform
non-blocking reads (this is implementation dependent), then for every read operation that it makes, zero or
more complete messages may be read into the input buffer. As a result, for all of the macros described in
this section which "read" messages, an actual read operation will occur on the connection only if the data is
not already present in the input buffer.

To get the size of the ICE input buffer, call the function.

cc
hhh

int IceGetInBufSize(ice_conn)
IceConnice_conn;

ice_conn A valid ICE connection object.cchhh

When reading messages, care must be taken to check for IO errors. If any IO error occurs in reading any
part of a message, the message should be thrown out. After using any of the macros described below for
reading messages, the macro can be used to check if an IO error occurred on the connection. After an IO
error has occurred on an ICE connection, all read operations will be ignored. Refer to the section titled
Error Handling for more discussion on handling IO errors.

cc
hhh

Bool IceValidIO(ice_conn)
IceConnice_conn;cchhh

The following macros can be used to read ICE messages:

cc
hhh

IceReadSimpleMessage(ice_conn, <C_data_type>, pmsg)
IceConnice_conn;
<C_data_type> *pmsg;

ice_conn A valid ICE connection object.

<C_data_type> The actual C data type of the message header.

pmsg This pointer is set to the message header.cchhh

is used for messages which are identical in size to the 8 byte ICE header, but use the spare 2 bytes in the
header to encode additional data. Note that the ICE library always reads in these first 8 bytes so it can
obtain the major opcode of the message. simply returns a pointer to these 8 bytes, it does not actually read
any data into the input buffer.

For a message with variable length data, there are two ways of reading the message. One method involves
reading the complete message in one pass using The second method involves reading the message header
(note that this may be larger than the 8 byte ICE header), then reading the variable length data in chunks
(see and

cc
hhh

IceReadCompleteMessage(ice_conn, header_size, <C_data_type>, pmsg, pdata)
IceConnice_conn;
int header_size;
<C_data_type> *pmsg;
char *pdata;

ice_conn A valid ICE connection object.

− 24 −

Inter-Client Exchange Library X11, Release 6.1

header_size The size of the message header (in bytes).

<C_data_type> The actual C data type of the message header.

pmsg This pointer is set to the message header.

pdata This pointer is set to the variable length data of the message.cchhh

If the ICE input buffer has sufficient space, will read the complete message into the ICE input buffer. Oth-
erwise, a buffer will be allocated to hold the variable length data. After the call, thepdataargument should
be checked against to make sure that there was sufficient memory to allocate the buffer.

After calling and processing the message, should be called.

cc
hhh

IceDisposeCompleteMessage(ice_conn, pdata)
IceConnice_conn;
char *pdata;

ice_conn A valid ICE connection object.

pdata The pointer to the variable length data returned incchhh

If a buffer had to be allocated to hold the variable length data (because it didn’t fit in the ICE input buffer),
it is freed here by ICElib.

cc
hhh

IceReadMessageHeader(ice_conn, header_size, <C_data_type>, pmsg)
IceConnice_conn;
int header_size;
<C_data_type> *pmsg;

ice_conn A valid ICE connection object.

header_size The size of the message header (in bytes).

<C_data_type> The actual C data type of the message header.

pmsg This pointer is set to the message header.cchhh

reads just the message header. The rest of the data should be read with the family of macros. This method
of reading a message should be used when the variable length data must be read in chunks.

− 25 −

Inter-Client Exchange Library X11, Release 6.1

To read data directly into a user supplied buffer, use the macro.

cc
hhh

IceReadData(ice_conn, bytes, pdata)
IceConnice_conn;
int bytes;
char *pdata;

ice_conn A valid ICE connection object.

bytes The number of bytes to read.

pdata The data is read into this user supplied buffer.cchhh

To read data as 16 bit quantities, use the macro.

cc
hhh

IceReadData16(ice_conn, swap, bytes, pdata)
IceConnice_conn;
Bool swap;
int bytes;
short *pdata;

ice_conn A valid ICE connection object.

swap If the values will be byte swapped.

bytes The number of bytes to read.

pdata The data is read into this user supplied buffer.cchhh

To read data as 32 bit quantities, use the macro.

cc
hhh

IceReadData32(ice_conn, swap, bytes, pdata)
IceConnice_conn;
Bool swap;
int bytes;
long *pdata;

ice_conn A valid ICE connection object.

swap If the values will be byte swapped.

bytes The number of bytes to read.

pdata The data is read into this user supplied buffer.cchhh

To force 32 or 64 bit alignment, use the macro. A maximum of 7 pad bytes can be specified.

cc
hhh

IceReadPad(ice_conn, bytes)
IceConnice_conn;
int bytes;

ice_conn A valid ICE connection object.

bytes The number of pad bytes.cchhh

14. Error Handling

There are two default error handlers in ICElib: one to handle typically fatal conditions (for example, a con-
nection dying because a machine crashed) and one to handle ICE-specific protocol errors. These error
handlers can be changed to user-supplied routines if you prefer your own error handling and can be changed
as often as you like.

− 26 −

Inter-Client Exchange Library X11, Release 6.1

To set the ICE error handler, use

cc
hhh

IceErrorHandler IceSetErrorHandler(handler)
IceErrorHandlerhandler;

handler The ICE error handler. Pass to restore the default handler.cchhh

returns the previous error handler.

The ICE error handler is invoked when an unexpected ICE protocol error (major opcode 0) is encountered.
The action of the default handler is to print an explanatory message to stderr and if the severity is fatal, call
exit() with a non-zero value. If exiting is undesirable, the application should register its own error handler.

Note that errors in other protocol domains should be handled by their respective libraries (these libraries
should have their own error handlers).

An ICE error handler has the type of

cc
hhh

typedef void (*IceErrorHandler)(); void ErrorHandler(ice_conn, swap, offending_minor_opcode,
offending_sequence_num, error_class, severity, values)

IceConnice_conn;
Bool swap;
int offending_minor_opcode;
unsigned longoffending_sequence_num;
int error_class;
int severity;
IcePointervalues;

ice_conn The ICE connection object.

swap A flag which indicates if thevaluesneed byte swapping.

offending_minor_opcode
The ICE minor opcode of the offending message.

offending_sequence_num
The sequence number of the offending message.

error_class The error class of the offending message.

severity or

values Any additional error values specific to the minor opcode and class.cchhh

The following error classes are defined at the ICE level. Refer to theInter-Client Exchange Protocoldocu-
ment for more details.

or

To handle fatal I/O errors, use

cc
hhh

IceIOErrorHandler IceSetIOErrorHandler(handler)
IceIOErrorHandlerhandler;

handler The I/O error handler. Pass to restore the default handler.cchhh

returns the previous IO error handler.

An ICE I/O error handler has the type of

− 27 −

Inter-Client Exchange Library X11, Release 6.1

cc
hhh

typedef void (*IceIOErrorHandler)();

void IOErrorHandler(ice_conn)
IceConnice_conn;

ice_conn The ICE connection object.cchhh

There are two ways of handling IO errors in ICElib.

In the first model, the IO error handler does whatever is necessary to respond to the IO error and then
returns, but it does not call The ICE connection is given a "bad IO" status, and all future reads and writes to
the connection are ignored. The next time is called it will return a status of At that time, the application
should call

In the second model, the IO error handler does call and then uses the longjmp() call to get back to the
application’s main event loop. setjmp() and longjmp() may not work properly on all platforms and special
care must be taken to avoid memory leaks, so this second model is less desirable.

Before the application I/O error handler is invoked, protocol libraries that were interested in being notified
of I/O errors will have their handlers invoked. This handler is set up in the protocol registration functions
(see and and could be used to clean up state specific to the protocol.

cc
hhh

typedef void (*IceIOErrorProc)();

void IOErrorProc(ice_conn)
IceConnice_conn;

ice_conn The ICE connection object.cchhh

Note that every callback must return. This is required because each active protocol must be notified of the
broken connection, and the application IO error handler must be invoked afterwards.

15. Multi-Threading Support

To declare that multiple threads in an application will be using the ICE library, call

cc
hhh

Status IceInitThreads()cchhh

The function must be the first ICElib function a multi-threaded program calls. It must complete before any
other ICElib call is made. IceInitThreads returns a non-zero status if and only if it was able to successfully
initialize the threads package. It is safe to call this function more than once, although the threads package
will only be initialized once.

Protocol libraries layered on top of ICElib will have to lock critical sections of code that access an ICE con-
nection (for example, when generating messages). Two calls, which are generally implemented as macros,
are provided:

cc
hhh

IceLockConn(ice_conn)
IceConnice_conn;

IceUnlockConn(ice_conn)
IceConnice_conn;

ice_conn The ICE connection.cchhh

To keep an ICE connection locked across several ICElib calls, applications use and

− 28 −

Inter-Client Exchange Library X11, Release 6.1

cc
hhh

void IceAppLockConn(ice_conn)
IceConnice_conn;

ice_conn The ICE connection to lock.cchhh

The function completely locks out other threads from ICElib until is called. Other threads attempting to use
ICElib will block. If the program has not previously called has no effect.

cc
hhh

void IceAppUnlockConn(ice_conn)
IceConnice_conn;

ice_conn The ICE connection to unlock.cchhh

The function allows other threads to complete ICElib calls which were blocked by a previous call to from
this thread. If the program has not previously called has no effect.

16. Miscellaneous Functions

To allocate scratch space (for example, when generating messages with variable data), use the function.
Each ICE connection has one scratch space associated with it. The scratch space starts off as empty and
grows as needed. The contents of the scratch space is not guaranteed to be preserved after any ICElib func-
tion is called.

cc
hhh

char *IceAllocScratch(ice_conn, size)
IceConnice_conn;
unsigned longsize;

ice_conn A valid ICE connection object.

size The number of bytes required.cchhh

The memory returned by shouldnot be freed by the caller! The ICE library will free the memory when the
ICE connection is closed.

− 29 −

Inter-Client Exchange Library X11, Release 6.1

Appendix A

Authentication Utility Functions

As discussed in this document, the means by which authentication data is obtained by the ICE library (for
Connection Setupsor Protocol Setups) is implementation dependent.†

This appendix describes some utility functions which manipulate an ICE authority file. The authority file
can be used to pass authentication data between clients.

The basic operations on the .ICEauthority file are : get file name, lock, unlock, read entry, write entry, and
search for entry. These are fairly low level operations, and it is expected that a program like "iceauth"
would exist to add, remove, and display entries in the file.

In order to use these utility functions, the<X11/ICE/ICEutil.h> header file must be included.

An entry in the .ICEauthority file is defined by the following data structure:

cc
hhh

typedef struct {
char *protocol_name;
unsigned short protocol_data_length;
char *protocol_data;
char *network_id;
char *auth_name;
unsigned short auth_data_length;
char *auth_data;

} IceAuthFileEntry;cchhh

The protocol_nameis either "ICE" for connection setup authentication, or the sub-protocol name, such as
"XSMP". For each entry, protocol specific data can be specified in theprotocol_datafield. This can be
used to search for old entries that need to be removed from the file.

network_idis the network ID of the client accepting authentication (for example, the network ID of a ses-
sion manager). A network ID has the form...

lw(0.25i) lw(2.5i) lw(1i). tcp/<hostname>:<portnumber>or
decnet/<hostname>::<objname> or local/<hostname>:<path>

auth_nameis the name of the authentication method.auth_data is the actual authentication data, and
auth_data_lengthis the number of bytes in the data.

To obtain the default authorization file name, call the function.

cc
hhh

char *IceAuthFileName()cchhh

If the ICEAUTHORITY environment variable if set, this value is returned. Otherwise, the default authori-
zation file name is $HOME/.ICEauthority. This name is statically allocated and should not be freed.

In order to synchronously update the authorization file, the file must be locked with a call to This function
takes advantage of the fact that the "link" system call will fail if the name of the new link already exists.

hhhhhhhhhhhhhhhhhh
† The X Consortium’s ICElib implementation assumes the presence of an ICE authority file.

− 30 −

Inter-Client Exchange Library X11, Release 6.1

cc
hhh

int IceLockAuthFile(file_name, retries, timeout, dead)
char *file_name;
int retries;
int timeout;
longdead;

file_name The authorization file to lock.

retries The number of retries.

timeout The number of seconds before each retry.

dead If a lock already exists that isdeadseconds old, it is broken. A value of zero is used to
unconditionally break an old lock.cchhh

One of three values is returned:

lw(2i) lw(5i). T{ T} T{ The lock succeeded. T}

T{ T} T{ A system error occurred. errno may prove useful. T}

T{ T} T{ retriesattempts failed. T}

To unlock an authorization file, call the function.

cc
hhh

void IceUnlockAuthFile(file_name)
char *file_name;

file_name The authorization file to unlock.cchhh

To read the next entry in an authorization file, call the function.

cc
hhh

IceAuthFileEntry *IceReadAuthFileEntry(auth_file)
FILE *auth_file;

auth_file The authorization file.cchhh

Note that it is the responsibility of the application to open the file for reading before calling this function. If
an error is encountered, or there are no more entries to read, is returned.

Entries should be free with a call to (see below).

To write an entry in an authorization file, call the function.

cc
hhh

Status IceWriteAuthFileEntry(auth_file, entry)
FILE *auth_file;
IceAuthFileEntry *entry;

auth_file The authorization file.

entry The entry to write.cchhh

Note that it is the responsibility of the application to open the file for writing before calling this function.
The function returns a non-zero status if the operation was successful.

To search the default authorization file for an entry matching a given protocol_name/network_id/auth_name
tuple, call the function.

− 31 −

Inter-Client Exchange Library X11, Release 6.1

cc
hhh

IceAuthFileEntry *IceGetAuthFileEntry(protocol_name, network_id, auth_name)
char *protocol_name;
char *network_id;
char *auth_name;

protocol_name The name of the protocol to search on.

network_id The network ID to search on.

auth_name The authentication method to search on.cchhh

If fails to find such an entry, is returned.

To free an entry returned by or call the function.

cc
hhh

void IceFreeAuthFileEntry(entry)
IceAuthFileEntry *entry;

entry The entry to free.cchhh

− 32 −

Inter-Client Exchange Library X11, Release 6.1

Appendix B

MIT-MAGIC-COOKIE-1 Authentication

The X Consortium’s ICElib implementation supports a simple MIT-MAGIC-COOKIE-1 authentication
scheme using the authority file utilities described in Appendix A.

In this model, an application such as a session manager, obtains a magic cookie by calling and then stores it
in the user’s local .ICEauthority file so that local clients can connect. In order to allow remote clients to
connect, some remote execution mechanism should be used to store the magic cookie in the user’s .ICEau-
thority file on a remote machine.

In addition to storing the magic cookie in the .ICEauthority file, the application needs to call the function in
order to store the magic cookie in memory. When it comes time for the MIT-MAGIC-COOKIE-1 authenti-
cation procedure to accept or reject the connection, it will compare the magic cookie presented by the
requestor to the magic cookie in memory.

cc
hhh

char *IceGenerateMagicCookie(length)
int length;

length The desired length of the magic cookie.cchhh

The magic cookie returned will be null terminated. If memory can not be allocated for the magic cookie,
the function will return Otherwise, the magic cookie should be freed with a call to free().

In order to store the authentication data in memory, call the function. Currently, this function is only used
for MIT-MAGIC-COOKIE-1 authentication, but it may be used for additional authentication methods in the
future.

cc
hhh

void IceSetPaAuthData(num_entries, entries)
int num_entries;
IceAuthDataEntry *entries;

num_entries The number of authentication data entries.

entries The list of authentication data entries.cchhh

Each entry has associated with it a protocol name (e.g. "ICE" for ICE connection setup authentication,
"XSMP" for session management authentication), a network ID for the "accepting" client, an authentication
name (e.g. MIT-MAGIC-COOKIE-1), and authentication data. The ICE library will merge these entries
with previously set entries, based on the (protocol_name, network_id, auth_name) tuple.

cc
hhh

typedef struct {
char *protocol_name;
char *network_id;
char *auth_name;
unsigned short auth_data_length;
char *auth_data;

} IceAuthDataEntry;cchhh

− 33 −

